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I'] A8STRAC I

We consider the usual univariate linear model E(y) = X7 , V(y) = 2 1

In Part One of t.nis paper X has full column rank. Numerically stable and

efficient computational procedures are develocped for the least squarec estima-

Iion of 7 ant the error sum of squares. We employ an orthogonal triangular

lecomposition of X using 'Householder transformations. A lower bound for the

con!Tiion number of X is immediately obtained from this decomposition.

Similar computational procedures are presented for the usual F-test of the

general linear hypothesis L'7 = C ; L'y = m is also considered for m ý 0.

a Updating techniques are given for adding to or removing from (X,y) a row, a

: set of rows or a column.

In Part Two, X has less than full rank. Least squares estimates are

obtained using generalized inverses. The function L'y is estimable when-

ever it admits an unbiased estimator linear in y . We show how to computa-

tionally verify estimability of L'? and the equivalent testability of
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by
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and
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Abstract

We consider the usual univ--ziate linear model E(y) = X, V(y) = 2 1

In Part One of this paper X has full column rank. Numerically stable

and efficient computational procedures are developed for the least squares

estimation of y and the errox sum of squares. We employ an orthogonal

triangular decomposizion of X using Householder transformations. A lower

bound for the condition number of X is immediately obtained from this

decomposition. Similar computational procedures are presented for the

usual F-test of the general linear hypothesis L') = 0 ; L'7 = m is

also considered for m A 0 . Updating techniques are given for adding to

or removing from (X,y) a row, a set of rows or a column.

In Part Two, X has less than full rank. Least squares estimates are

obtained using generalized inverses. The function L'7 is estimable

whenever it admits an unbiased estimator linear in y . We show how to

computationally verify estimability of L'M and the equivalent testability

of L'y 0
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PARE ON~E: IUJIVARIAJTE LINEAR MODEL WITHl FULL RANK

1. Least squares et tim- on and error sum of squares

We consider the univariate general linear model

(1.1) E(y) = X7 ; V(y) = aI

where E(.) denotes mathematical expectation and V(.) the variance-

covariax-ce matrix. We take the design matrix X to be n xq of rank

q < n and known; in part two we relax this assumption of full column

rank. The unknown vector 7 of q regression coefficients is estimated

by least squares from an observation y by minimizing the sum of squares

(1.2) (y - X7)'(y - XY)

Prime denotes transposition; bold-face capital letters denote matrices

and bold lower-case letters vectors, with rows always appearing primed.

In the case where V(y) = a2A in (1.1), with A known and positive

definite, we may replace y by Fy and X by FX where F satisfies

FAF' = T . The matrix F is not unique but it is possible to find an F

which is lower triangular from the Cholesky decomposition of A (cf. e.g.,

Healy, 1968).

It is well known that the least squares estimate 5 satisfies thc

normal equations

(1.3) X'XY = X'y

and is unique when X has full rank. The matrix X'X is greatly
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influenced by roundoff errors and is often ill-conditioned: by this

we mean that a relatively "small" change in X will induce a correspondingly

"large" change in (X'X)" 1  and in the solution ^ = (X'X)'X'y to (1.3).

For these reasons we prefer to work with X directly rather than XIX

[cf. e.g., Longley (1967), Wampler (1969, 1970)].

It is possible to find an n xn orthogonal matrix P such that

(1.4) X = ; P)x

where R is upper triangular of order q x q . This ortho 'nal triangular

decomposition (0TD) may be made in various ways; a very stable numerical

procedure (Golub, 1965) is to obtain P as the product of q Householder

transformations.

A square matrix of the form H = I -2uu' , where u'u = 1 , is defined

to be a Householder transformation. Clearly H = H' and

HH' = Y'H = H2 = I , so that H is a symmetric and orthogonal matrix.

All but one of the characteristic roots of H are imity, the simple

root being -1 .

A vector x may be transformed by a Householder transformation to

a vector with each element zero except for the first, i.e.,

(1.5) Hx = re ; r 0

say, where e. is an ,_ 1 vector with each component 0 except for

the j-th which is 1 (j = 1,2,...,n) . Premultiplying (1.5) by its

transpose yields

2 2
(1.6) x'x = x'H'Hx = r e =r
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Substituting H = I - 2uu' in (1.5) gives

(1.7) x -2(u'x)u = rel

premultiplication by u' yields -ux~ = ruI , where uI = e;.u , the

first element in u . Substitution in (1.7) gives x+ 2rulý = reI,

so that with x = txi} ,

2(1.8) 2uI = 1-(xilr) ; 2u =--xi/(rul) , i =n

The first expression will always be computed positive if the square root

of (1.6) is taken as

(1.9) r = -sg(x ).Cx 1/x ,

where sgn(xl) = +1 if x, > 0 and -1 otherwise. Then

(1.10) 2u = 1+ (Ix1l/s) ; 2u. = sgn(xl.xi/(sul) , i =2,...,n

where

(1.11) s - +(xx)1/2

n. 2 22 2 2 2 22)
This gives u'u_ = 1 , for 2u x = xi/(s2+sx 1I), i = ,.n.

Hence 2 -1 : (s -x1)/(s 2 +s X 1 ) = 1-(x 11/S) = 2(l-ul) . We note

i=2

that H need not be computed explicitly as Hx = x- 2(u'x)u , for which

we need only u and v'" . In the above form, it is necessary to compute

two square roots per Householder transformation; if, however, we write

-1H = I -u(u'u) lu' then only one square root need be calculated (Businger

and Golub, 1965).
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Applying this procedure with x replaced by Xe1 , we obtain

(1.12) HX_ = (rnll,Xl) ,

where rll replaces r , and X is n x (q-1) such that

Xle = x.+ 1 -2(u'x )u , 1- l,...,q-1 and x. Xe.+~ . This
-Jl~j -i~ - ..j+l - .. J+l ,.jl

procedure is now repeated with Xle1as x and a Householder transformation

H1 =~I-2u u' , say, with ule = C . The last n-2 elements of Xe

axe now annihilated. So H HXe = r He• =rle , while HHXe = H Xle

has its last n-2 components zero. The product H H is orthogonal.

Further repetitions, annihilating at the j-th stage the last n-j elements

in the j-th column of the matrix X transformed previously by j-1

Householder transformations (j = 1, ... ,q) , realizes P as the product

of q Householder transformations. The matrix P is not computed

explicitly. Details of this algorithm are given by Golub (1965), and

Businger and Golub (1965) who also give a program in Algol 60.

Partitioning P = (P 1 ,P 2 ), with P1 nxq and D2 nx(n-q) gives

from (1.4)

(11-13)

with fP=PIP = 0 and PIP=I , since P'P = I . If, inq Z2_ ~ 2- n-q ~ ~ Zn

the above algorithm, we simultaneously apply the q Householder transfor-

mations to the observation vector y , then we have

(1.14) Ply = C z

say. Thus Py expectation E(P) = P' X = 0 and covariance

I2 = 2- ha- l...iIn - 2 -



I
matrix V(P'y) = !2P'P = '.I . Hence z2 is an easily computed

vector of uncorrelated regression residuals and may be used to test for

serial correlation (cf. e.g., Grossman and Styan, 1970). It follows that

(1.15) •P + x(x'x)- , = -i

as each term on the left-hand side is idempotent and their cross-product

is 0 ; their sum is idenpotent with rank the sum of the ranks n-q and q

so P P = I -x(x,') ,X and z2z -y'PPy = (y -X5ý), (y- X^) is

the error sum of squares Se , say -- the minimum of (1.2). It is simply

computed here as the sum of squares of the n-q elements in z = PIy
A2

The vector of (correlated) residuals r = y-X7 is often essential

for analysis of the linear model (cf. e.g., Draper and Smith, 1966).

Though the matrix P may not be computed explicitly it, can be retrieved

as the product of q Householder transformations when the corresponding

q u vectors have been stored (which we recommend). Hence we compute

r P z since P z = P Ply = [I-X(X'X)-fX']y = y-XY = r • However,2 _22 2 22 ..... ...

it has been observed by Gentleman (1970) that computing r in this fashion

may be numerically unstable.

We also find from (1.4) that

(1.16) X'X = (R',O)P'P(R) =R'R~ .. . . o - -0

Substitution in (1.-5) yieLas R'R7 = (R',O)P'y = RI! , so that solving

(1.17) Rý = z

gives 7 . This is expedited by R being upper triangular.
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We note that R'R is a Cholesky factorization of X'X , for which

Healy (1968) has given a Fortran program.

The estimator ; has covariance matrix V(ý) = a (XtX)I ; an

unbiased estimate is S e(Xtx)-i /(n-q) which is easily computed using

(1.16) as (zz 2 )R
1 (R-1)'/(n-q) . The generalized variance (cf. e.g.,

Anderson, 1958) is Iv(7)l = a 2/x'Xl , where 1-1 denotes determinant.

In optimal design theory a problem is to choose X so that IX'XI is

maximized thus reducing Iv(7)1 as much as possible. Again using (1.16)

q 2
we see that IX'XI = RRI = ffrii , as R is upper triangular. Hence

IV(•) I is estimated by [z / (n-q) ]q/ r .
~ ~i=l1i

A measure of the ill-conditioning of a matrix is its condition number

which we define as the ratio of the largest and smallest nonzero singular

values of the matrix. The singular values of a (possibly rectangular)

matrix A are the positive square roots of the characteristic roots of

A'A or AA' . When the condition number far exceeds the rank we find

(cf. Wilkinson, 1967) that the matrix is extremely ill-conditioned.

A lower bound for the condition number x(X) of the design matrix X

is the ratio of the largest and smallest (in absolute value) diagonal

elements of R . To see this we note first that X and P'X have the

same singular values, d'ue to the orthogonality of P . As P1 X is merely

R bordered by zeroes, sg(X) = sg(R) , where sg(.) denotes singular

value. For any square matrix A of order nxn ,

(1.18) sgn(A) 1ch i(A)I < sgl(A) ; j =l,...,n

with ch(e) denoting characteristic root. The subscript j indicates
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j-th largest. To prove (1.18) when A has real roots, let X = ch.(A)

with Av = Xv . Then

(1.19) sg 2(A) = chl(A'A) = max[xtA'Ax/x'tx > v'A'Av/vv =
1x ---------------------------- -- - --- ------

= XvA'v/vtv = X2

2 2Similarly sgn (A) <X . Thus

sgM(X) sgl(R) maxIch(R)l maxlriiI

1sg(- =minlch(R)I = minjriil

Other properties of x(A) are given by Wilkinson (1967).

Why is the condition number important and how can we use the

relationship (1.20)? Let ' be the computed approximation to y which

satisfies (1.3). Suppose that we wish to determine an upper bound for

the norm of the relative error of

(1.21) -1

where 1a a indicates the Euclidean norm (aia)/2 . Define

(1.22) =y -X

which we can compute quite accurately. Then

(1.23) r-r = -X(.;')

and hence

(1.24) -x'x( - ) =-x,
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since X'r = 0 . Thus

(1.25) II -7If = II(X'X)"'X II .< chl[(X'X)'2]IIx'II _

From (1-.3), IIX'X5'I IIx'yil , so that

(1.26) ix'y~l _ 5' sg-(X)

Combining (1.25) and (1.26), we have

(1.27) 1I•I-YiI/IIII < [sg_(X) sg (x)] 2 11x,,il11x,,yl1

: K'I(x)IIx'; yI

Thus we see that the condition number may be used for determining an

upper bound for the relative error of 1 5 .• This upper bound is the

product of two factors; the first of which, 2(X) , is independent of y

However, the lower bound provided by (1.20) would in some circumstances

give insight into the relative error. Hence, if

(1.28) [maxr.ii.i / minjr ii 1)2 11 X', Ij X,y 11

is large, then it is likely that the relative error in is large.

The numerical efficiency of the above orthogonal triangular

decomposition is enhanced (cf. Golub, 1965) if the column selected for

each of the q Householder transformations maximizes the corresponding

sum of squares. That is, at the J-th stage (j = 1,...,q) we transform

that column of the q-j+l possibilities which maximizes the sum of

squares of its last n-j+l components. The interchanges may be

summarized in a permutation matrix IT postmultiplying X . Thus (1.4)

becomes

I •. . ... • .. . ' '. .. .. . . i I I " " 1! I t I • i 1 I *1 I i



(1.29) x =P ; P'Xr - ( R

The vector z does not change and hence neither does S . The solution~ e

(1.17) changes however; substituting (1.29) into (1.5) now gives

TR'RtR'r = TrR'zl, so that

(1.30) R( ) ( z = RO

is solved for 9 , and T' = • As these interchanges only rearrange
q 2

the r.. we still find jx'xl = Fr.. . The lower bound for the condition~ ~ i=l1i

number simplifies, however, as with these interchanges max triij = Irl ,

and minlr.I - Ir qq so that K(X) _> Irl/rqql

Given the n x n matrix

(1.31) A =

LO 0 ,0,..,i

we see that maxlriiI = minlriiI = 1 , and so ;(A) > 1 , since A = R

when no column interchanges are made. However, if column interchanges

are performed then for r. = 10 say, IrllI 3.162, Irnn .003383

and x(A) > 934.8. The nctual value of K(A) = 1918.5 •

The Fortran IV programs LLSQ and DLLSQ (double-precision) in the

Scientific Subroutine Package (SSP) of IBM (1968) solve the least squares

problem as described above. The SSP library is available at many IBM 360

computing centers. The SSP manual gives a write-up of the procedure and

9
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indicates how y and Se are output. In addition we note that the q

diagonal elements of R are output as ' AUX(q+l,...,2q) ' , with

ma.xjriir = AUX(q+l) and minlriij = AUX(2q) in absolute value. The

remaining nonzero elements of R are overwritten in corresponding

positions of X (input as ' A '). The vector z is overwritten on y

(input as ' B ') and S appears in ' AUX(l) '. The solution 5 is
e

output as ' X '.

The number of multiplications to obtain R is about nq2 -q3/3 ,

whereas approximately nq 2/2 multiplications are required to form the

normal equations (1.3) with about q3/6 multiplications needed to solve

them. Thus when n-q is small, the number of operations is rougl'2y the

same for both algorithms, but when n-q is large, it requires about twice

as many operations to use the orthogonalization procedure.

The orthogonal triangular decomposition (1.4) or (1.29) is very

similar to the Gram-Schmidt decomposition. Indeed if n = q and there

is no roundoff error and all rii are taken positive, then the Householder

and Gram-Schmidt algorithms yield precisely the same transformation.

Although the modified Gram-Schmidt process (cf. e.g., Golub, 1969) may be

used for solving linear least squares problems, the computed vectors may

not be truly orthogonal' The Householder transformations, however, yield

vectors which are more nearly orthogonal (Wilkinson, 1965). Furthermore,

not only do the first q nolumns of P span the same space as the

columns of X , but the last n-q columns of P span the complement of

the space spanned by the columns of X • As we have seen above, this is

quite useful.
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2. Hyýpothesis testing and estimation under constraints

Let us consider the general linear hypothesis

(2.1) My' = 0

for the linear model of Section 1. The contrast matrix L' is taken as

sxq of full row rank s <<q . If we assume that y is normally

distributed then L'5 is N(L'y,a2L'(X'X)'L) , with Y = (X'X)Y'Xly

The numerator of the usual F-test for (2.1) is then well known to be

(2.2) 5'L[L'(X'X)- L-I LV = Sh,

say, the "hypothesis sum of squares". Substituting (1.16) and (1.17)

into (2.2) gives

(2.3) Sh =!z(R-l)L [L'R-I(R-)I) L]-I'-R-i z- •
h - -- - - - ~ 1

We compute (R- )'L = G , say, by solving R'G = L , with R' lower

triangular. We then obtain an orthogonal triangular decomposition of G

qxs (q_>s)

(2.4) G = (R-1 )'L = QiB

say, where B is upper triangular s x s and the orthogonal matrix Q

is the product of s Householder transformations. Then G'G = B'B ;

partitioning - = (Q1,Q2) , -where _l is q x s and Q-2 q x (q-s) gives

G = Q from (2.4). Substitution in (2.3) yields

(2.5) Sh _1z SI z1

3-1



which we compute by applying the s Householder transformations of (2.4)

to z1  simultaneously with G and then summing the squares of the

first s components of the transformed z 1

If we test the hypothesis

(2.6) L'y = m

where m is a given s I 1 vector, not necessarily 0 , then we proceed

by computing L'My -i = h , say, and sum the squares of the components of

(B -)'h ; we find the latter by solving L'G-m = h = B't , say, for t ,

with B' lower triangular.

The described procedure can be improved upon when s > q-s . We

first obtain an orthogonal triangular decomposition of L ,

(2.7) L

say, where T is orthogonal and U upper triangular. Partitioning

T = (TI,T2), where T, is q xs and T2 is qx(q-s) leads to

(2.8) VT Lu' = 0

Thus L'7 = 0 if and only if y =T for some @ , now unconstrained.

Hence

(2.9) min (y -Xy)'(y -Xy) = min(y -XT Q@)'(y -XT22)LMY =0 .. . ...

Using (1.4) and (1.14), we see that (2.9) reduces to

(2.10) min(z -RT 9)'(z -RT + ,
9 1- 2

12



so that Sh equals the first term in (2.10) which is easily computed

as in Section 1 with zI replacing y and RT2  replacing X • Since

(cf. e.g., Good (1965), p. 89),

(2.11) sg1 (X-) sgg(XT-2 ) ,

(2.12) sgq(X2) < sgq-s5 (xT) < sgq-s(X2) ,

we have

(2.13) ,•(X) (XT) = K,(X) .

Thus, by eliminating the constraints, the linear least squares problem

may become better conditioned.
*

The least squares estimate y , say, of y subject to L'y = 0 is

obtained from the solution 9 to (2.10) by

* A!

(2.14) 7 =TQ

If the constraints have nonnull righthand side m as in (2.9) then

the procedure is changed as follows. Evidently L'y = m holds if and

only if Y = T29+TI(U -)'m= T+Tw , say. We obtain w by solving

m = U'w , with U' lower triangular. Thus y is replaced by y-XT1

and hence z 1 by z-RT ,w the resulting value of Sh is therefore

(2.15) min(z 1 HI!-.l- !!)20

which we compute as in Section 1 with z 1-m- replacing y and 'R2

replacing X

1,



The relevant F-test for the hypotheses (2.1) or (2.6) is then

computed as

Sh/S

(2.1 ) F = 
.,

with the critical region formed by values of (2.16) exceeding the corres-

ponding tabulated value of F with s and n-q degrees of freedom.

In some special, though common, situations the above ccmputations

simplify considerably.

If we test a single contrast in y equal to 0 we obtain (2.1)

with s = 1 . Let us write this as

(2.17) f'l = 0

A particular case might be testing a single regression coefficient equal

to 0 . Then (R- 1 )'L = K becomes (R- 1 )'l = k , say, found by solving

I = R'k as before. Then (2.3) becomes

(2.18) (f•) 2 / k'k = S h I

and we compute the denominator in (2.18) by summing squares of components

in k . The one-sided t-test for

(2.19) V7 > 0

has critical region large positive values of /t[k'k Se/(n-q)i/2

Another special case occurs with s = q-1 when L'M = 0 if and

only if

(2.20) y= Qt

14
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wherc 9 is now a scalar. The vector t is often found upon inspection

(without transforming L ). For example in testing for homogeneity of

coefficients of y , we have t = e , the vector with each component

unity. Substituting t for T2  in (2.10) yields

(2.21) 9 = z' Rt/t'R'Rt

and

(2.22) Sh = zi/l- (Rt) 2 /t'R'Rt

with the denominators computed by summing squares of elements of Rt

15



3. Updating procedures

After a particular set of data has been analyzed it is often

pertinent to add to or remove from X and y a row (or set of rows

or to add to or remove from X a column. This happens when new informa-

tion becomes available or when existing experimental units have been

classified as extreme, or independent variables insignificant.

We begin by corsidering the additicn of data from m , say, further

experimental units. Let X and y be the corresponding data of order

m x q and m x 1 :-espectively. Following (1.4) and (1.14) we may write

i 0 x M Y
(3.1) ( z§0 Pt, (x y

0 z2

Applying q Householder transformations of order m+q to the first m+q

rows of (3.1) yields

(3.2) ( )
say, where RI is q x q upper triangular, z0 is q x and z is

m x 1 . Hence

R""

(3.3) P-S 0 z •
kX y 0 !2

where

16
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~1 I 01 0

(34 PI
-2

O -n-q ~0 P

is an orthogonal matrix formed from 2q Householder transformations, and

has order m+n . The new residual sum of squares is z fz* + z'z
1 l -2-~2

i.e., the previous sum of squares, z'z 2 , augmented by the sum of squares
*

of the m components of zI ; these components themselves give m

additional uncorrelated residuals.

Next, suppose we wish to add a (q+l)-tb variable whose n values

constitute a vector x . We first compute P'x by applying in turn the

q Householder transformations determined by the stored vectors u

(cf. residual calculations in Section 1). We need then only one farther

Householder transformation, H , say, of order n-q to annihilate the

last n-q-i elements in P'x , i.e.,

(q 0\ (R Pfx (R P'x -

(5y5))P(x~x = =I2)
0 H 0 HP'x 0 heI

where P = (P 1 ,P 2 ) , as in §1, and h = O'P 2 P'x ,the sum of squares of

the last n-q ccmponents of P'x .

The procedure for removing an experimental unit is more complicated.

The method given previously by Golub and Saunders (1970), may under

certain circumstances prove unstable. We now give a new method which

should provide a more accurate solution.
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Suppose we want to remove x the i-th row of X We seek an

upper triangular matrix S , say, so that

(3.6) X'X-xx! =R'R-x.x' = S'S =R'(I-tt')R
1 - - ......i - -

say, where R't = x. ; the vector t is easily computed since R' is
lower triangular. We now construct an orthogonal matrix Q so that

Qt = ce 1 ; thus c2 = t -t = x'(R'R)-lx = e'X(X'X)'X'e. < 1 . We defineKt .. .. ~ _i_

the quasi-diagonal matrices of order q x q

(3.7) Zk _ k k = , ...,q-1,
Iq-k-i

where

(3.8) 9k ( k; k =

"-sin k' cos Q.

Clearly Zk and e are orthogonal. Let

(3.9) (5j , !) = Z _ (•+1 -i _l ýj _l,..)-

with t = t and R = - • We choose 9 so that Z annihilates0 kq-f
el t and hence ~qe+v
eq- an1I-1 e' t 0 ; I = l,...,q-I • Then the matrix

(-1) - = Lq--

satisfies Qt = ce1  and is orthogonal. Fran (3.6) we may write
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(3.11) S's = R'Q'(I- c2 e e) QR

which is positive definite it and only if c2 > 1 . It follows that

wn , w`12,. wl, q-, wlq

w2 w22, ... w2., w2q
(3 212 lOR- = WW0q

(5.12) Q = o, w`32 ... w5,q_1 w3q

O, 0 , ... W q, q.I , qq

is an upper Hessenberg matrix. Thus (3.11) becames S'S = W'D2W , with

(1-c 2)l/2 of

(.1) D q

2

which is real when c < 1 . We compute S by applying orthogonal

transformations to the upper Hessenberg matrix DW . Let

(3.14) . sJ = 7 k- ; k = 1,.o.,q-l ,

with S = Dw and Z formed as Z in (3.7) but with Qk relac

9k and so chosen that Zk annihilates etl Sk ek = e' DWe and thus

ei!k!k S - . Then

(3.15) S q-1 --s -- zq-1 _-2 ... z2 Z.1 w

This procedure requires about 9q 2/2 multiplications and 2q-1 square

roots.
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The above algorithm can also be used for adding an observation but

about twice as many numerical operations are required as in the procedure

given by (3.3) and (3.4). We also note that the problem of deleting an

observation is numerically delicate. Since

(3.16) S'S = R'(I-tt')R

it follows that

(3.17) K(S) < P(R) /(l-ttt)l/2

Thus if t't is close to 1 , then K(S) could be quite large as the

right-hand side of (3.17) is attainable.

Finally suppose we wish to remove an independent variable or

column of X . If it is the last then no further calculations are

required; but suppose it is the first. Let

(3.18) R= 2q r (r2l2 r)

o o!
qq

where R is q x (q-l) and has one more row than an upper Hessenberg

matrix. We annihilate the elements just below the main diagonal of R ,

i.e., r 2 2 , .... ,r qq by aPplying orthogonal transformations of the type

(3-7) with

(3.19) R=k Zk ;k_2 k 0

20



and R R ; we choose k in Zk so that el R e = r0 -I k 1-, ± =k- rkk+1, k+l1

is annihilated; thus etiRkek 0 and R is the new triangular

matrix sought.
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PART TWO: UINIVARIATE LTIEAR MODEL WITH LESS

THAN FULL RANK

4. Least squares estimation and error sum of squares

Wu consider now the Anivariate general linear medel (1.1),

(4.1) E(y) = X , V(y) = C2

with the design matrix 1 of ran" r < q < n . We obtain the same normal

equations as (1.5),

(4.2) X'X5 = X'/

-which are consistent; their solution, hcuever, may not be unique. Consider

a solutdon to (.4.2) which we may write

(4.3) = (x,x)-x,y ,

where (.) denotes generalized inverse. We follow Pringle and Rayner (1971)

and define a generalized invýerse of a matrix A , m xn , as any matrix A

satisfying

(4.4) AA-A = A

Evidently A has order T> ' >:r Such a generalized inverse exists but is

not unique in general; i-; "•owever, A" satisfies (4.4) and

(4.5) A-AA- = A-

(h.7) (A-A)' A'A

I1A jl



then we write A = A , the pseudo-inverse of A When we only require

that (4.4) is satisfied we will write A- = gl(A) -- a gl-inverse of A

Similarly when (4.4) and (4.5) are satisfied, A = gl2(A) ; (4.l), (4.5),

and (4.6): A- = g123(A) • The pseudo-inverse A+ = g1 2 3 4 (A) . The

solution 7 0 say, to (h.2) which minimizes y'7 equals X~y as is

shown, for example, by Peters and Wilkinson (1970). Our concern, however,

focuses .,,ore on estimable functions of 7' , rather than y per se so we

will not discuss here computation of ZO " We define an estimable function

of y as a vector L'y which admits an unbiased estimator of the form

K'y , where L' is sxq , say, and K' , sxn • The least squares

estimate is then L'y = Lt(X'X)-Xty so that K' = L'(X'X)-X' • We shall

see (Section 5) that when L'y is estimable, L'(X'X)-X' is unique for

all (X'X)- = g(X'X) . Rather than form X'X , find a g (X'X) and then

postmultiply it by X' , we compute a g1 2 (X) directly, noting that G

is a gl(A) if and only if it can be written as (A'A)-A' for some

gl(A'A) = (A'A)- [Pringle and Rayner (1971), p. 26].

We proceed as in Section 1 to orthogonally transform X by Householder

transformations with column interchanges. If X has rank r then after r

Householder transformations we obtain, cf. (1.29),

(4.8) x = P - -v P, X IT

where R is upper triangular, rxr , S is rx (q-r) , and IT is a

permutation matrix of order q x q . We now claim that

(4.9) x T, 0 g 3(X)
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We have XX = P', clearly symmetric. Hence XX X =( ' =TT X X

while X XX = 'P = X so that (4.9) is proved. The solution

0 0

= X Y to (4.2) afforded by (4.9) is often called a basic solution as it

contains at most q-r nonzero elements.

Thus (4.9) accoiodates our purposes; moreover we do not have a

stronger g-inverse than is needed. As in Section 1 we partition

P = (f1,P) , but now let P1 be n xr and P2  n x(n-r) . Fran (4.8)

it follows, cf. (1.13), that

(4.10) P_' X = (R,S)

(4.11) p 0x = o

Following (1.14) we now write

E2f H
(4.12) ply 02 -
where is now r x 1 and z (n-r) x 1 Thus is again a vector

of uncorrelated residuals; moreover

as in (1.15), with P2  idempotent rank n-r and X(X'X)'X' symmetric

idempotent rank r . By (4.11) their cross-product is 0 and so their

sum is idempotent rank (n-r)+r = n and hence I as claimed. Thus
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(4.14) 22' !2 = Z. . .,(-I X-x(X Ix-) -X,)Y

is the residual sum of squares, computed as the sum of squares of ti.

n-r components in z
.2

The vector of (correlated) residuals r = y-X7 = (I-X(X'X)-X')y = P2 P y

as in Section 1, and using (4.!3) it follows that (4.14) equals r'r

25



5. Estimating estimable functions and testing testable hypotheses

As mentioned in Section 4 we are not directly concerned with the

estimation per se of 7 . We define L'7 to be an estimable function

of 7 whenever it admits an unbiased estimator which is linear in y ,

K'y , say. Thus

(5.1) L'7 =E(K'y) = K' X

holds for all 7 . Hence

(5.2) L' K'X •

As in Section 5 we take L' to be sx q , but now relax the assumption of

full row rank taking r(L) = t < r . We obtain

(5.3) r ) = r(X) M

directly from (5.2). Substituting (4.8) into (5.3) gives

L'Tr
(5.4) r = = r(R)= r(X) = rr

R (,S) R ) S

where we partition

(5.5) L'Tr (LTT) ,

with L s x r , and L s x (q-r) . The matrix L'1T is the contrast

matrix L' with its columns permuted according to the interchanges which
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rearrange the columns of' X to make the first r columns linearly

independent. Then L' are the corresponding r columns of L' or L'T .

We apply v > r Householder transformations of order s+r , whose

product is V1 , say, so that

(5.6) v1 T (
R ,p S 00

where Il is a permutation matrix, and T is upper triangular vx v

If (5.6) is achieved at the r-th stage, i.e., v = r , then LMy is

estimable. If not, then L'y is not estimable.

An alternative procedure which is often easy to verify theoretically

follows and is included for completeness.

THEOREM 5.1. The function L'y is estimable if and only if

(5.7) L'(X'X)-XIX = L'

for any (X'X)" = g1 (X'X)

Proof. We show that (5.2) and (5.7) are equivalent. Clearly (5-7)

implies (5.2); conversely

(5.8) L'(X'X)-X'X - KIX(X'X) X'X - K'X = L'

since X(X'X)-X'X = X [cf. Pr~ngle and Rayner (1971), p. 26].

Q.E.D.

We may use (5-7) to computationally verify estimability as follows.
*

Substituting (h.8) and (4.9) into (5.7), with X = (X'X)-X' gives
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(5.9) L_{ -, = -L .
0 0 - -

Substituting (5.5) into (5.9) yields

(5.10) LIR1 S = L'

To verify (5.10), therefore, we solve RW = S for W , say, which equals

-1R S , with R upper triangular. We then examine L'W-L' and if close

enough to 0 conclude L'y estimable.

For the remainder of this section we ,ill assume L'7 estimable.

From (4.3),

(5.11) L, = ,(X'X) X'y L'X*y

where X* = (XtX)-X' gl 2 (Xý , cf. (4. 9 ). Thus

(5.12) L'•y = MIT R-1 l' = -z_1

using (4.12) and (5.5). We compute Ly , therefore, by solving Rw z

for w , say, which equals R z1  , with R upper triangular. We then

premultiply by Ll which contains the r columns of L' corresponding

to the r linearly independert columns of X which yielded R . We note

that L'I is uniquely determined by (5.11) for any (X'X)- = g (X"X)

To see this, set L' = K'X from (5.2), so that L'(X'X)-X' = K'X(X'X)X' =

K-X(X'X) --- L'(X'X)-+-X' , since X(X'X)-X' is unique (cf. Pringle and

Rayner (1971), p. 251.
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We define the general linear hypothesis

(5.1,5) L'7 = 0

as testable whenever L'7 is estimable. The numerator of the usuai F-test

for testable (5.13) is then, cf. (2.2),

(5.14) y'L[L'(X'X)-L]-L'7 = Sh

To see that (5.14) is invariant over choices of (X'X)- , notice that

L'(X'X)-L = K'X(X'X)-X'K = K'X(X'X)+X'K = L'(X'X)+L from (5.2). Moreover,

(5.14) is also invariant over choices of [L'(X'X)-L]- ; writing

X (X'X)-X' we find that (5.14) may be written

(5.15) y,(x*)'L[L x*(x*)'L] L'Xy = Sh

using (5-7) and (5.11). Sh is uniquely defined since for any A ,

A(A'A)-A' is unique [cf. Pringle and Rayner (1971), p. 25].

To compute Sh we see from (4.9) and (5.11) that (5.15) may be written

(5.6) =zj(R-11 M H 1( l) I-LI R-1I
h-1 -l1- - -l

(5.16) Sh =--__R_- - l) 'R...5

We obtain an orthogonal triangular decomposition of

(5.17) G -(f)

say, where B is upper triangular txt , with t = r(L) = r(Ll) by (5.10).

The orthogonal matrix Q is the product of t Householder transformetions,

while the permutation matrix 112 rearranges the columns of L rx s,
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to make the first t linearly independent. Substituting (5.17) into

(5.16) yields

(5.18) sh - zGG zI

where G = gl13(G) is given by

(5.19) G* = ! B
_ -5 - -I

We partition Q = (QIVQ 2 ), where QI is rxt and Q2 rx(r-t)

(If t = r , Q Q Then (5.18) reduces to

(5.20) sh ,i l K '

as at (2.5). We compute (5.20) by applying the t Householder transfor-

mations of Q in (5.-7) to zI simultaneously with G and then summing

the squares of the first t components of the transformed z 1

If we test the hypothesis

(5.21) L'y = m

and L' is s xq with row rank t < s then m must satisfy the same

s-t restrictions that apply to the rows of L' , i.e., (5.21) must be

consistent. Then the numerator zum of squares is uniquely given by

(5.22) ('L -m')[L'(X'X)-L]'(L7 -m) = Sh

following (5.15) and (5.16) we see that

(5.23) L' (X'X)-L = L'R' (R! )'L G'G

--------1. R .. '.l = 2-
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for which we want a g1 -inverse. We use

*

LD4MA 5.1. If A = g23(A) , then

(5.24) A (A*)t = g9(A'A)

Proof. From (4.4), (4.5) and (4.6) we have

* * * * * A

(5.25) AA A=A , A AA =A , AA = (A*)'A

Hence A( 'A'A = A AA A = A A. Thus A'A[A *(A * A] = A' AA A A'A

and [A (A*)A'A]A*(A*)' =A AAA(A*)' = A*(A)'.

Q.E.D.

From Lemma 5.. we obtain

(5.26) G*(G*)' = [L'(X'X)'L]-

=% -1(B-I) ,•,
= 5 -21

from (5.19), where we partition T2 = (T21'r22) , with 1 sxt

identifying t linearly independent columns of L, r x s Hence

(5.27) Sh = (ýL-m' )! 2 2-I(B"i)0r 1 (L'5' -m)

First L'7 -m is computed and rearranged to form !T1'(L'i -m) = h , say.

Then h = B'k is solved for - . where B' is lower triangular. Finally

Sh is found as the sum of squares of the components in

k= = (B 1 h = (B- )'•(.'y -m)

The relevant F-test for the hypotheses (5.13) or (5.21) is then

computed as
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Sh/t

(5-28) F= Sel-

e7

cf. (2.13), with the critical region formed by values of (5.28) exceeding

the corresponding tabulated value of F with t and n-r degrees of

freedom.

The above procedures simplify slightly when the contrast matrix L' ,

sx q , has full rank s < r = r(X) . In that case (5.23) becomes non-

singular and the results of Lemma 5.1 are not needed. We use

LEMMA 5.2. When L'y is estimable,

(5.29) r[L'(X'X)-L) = r(L)

where r(-) denotes rank.

Proof. Using (5.7), r(L) = r[L'(X'X)-X'X] _< r[L'(X'X)-X']

r[L'(X'X)-X'Xt(X'X)-]'LI = r[L'(X'X)-L] < r(L)

Q.E.D.

When L' , s x q , has full row rank s < r the decomposition (5.17)

becomes

(530) G = 1

say, where !21 is now s x s and may equal Is (no column interchanges).

Formula (5.27) applies with essentially no change.

We defer discussion of updating techniques for the less than full rank

case and extensions to multivariate models to a further paper. A computer

program in Fortran IV for the IE4 360 is being developed for the procedures

discussed in this paper.
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